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Abstract. I studied the effects of including
station dependent delay noise in the analysis of
geodetic VLBI data. Such terms increase the ob-
servational noise, and introduce correlation be-
tween observations. Using the CONT05 ses-
sions, I demonstrate that introducing such noise
terms reduces baseline scatter, gives more real-
istic formal errors, and improves agreement be-
tween VLBI and GPS estimates of Polar Motion
and LOD.

1 Introduction

The VLBI observable, colloquially called the “de-
lay”, is the difference in arrival time of a signal
at two different stations. Roughly speaking, the
delay is measured by cross-correlating the sig-
nals received at the two stations and searching
for a peak. This process has an uncertainty as-
sociated with it which, for clarity, I call measure-

ment noise and denote by σmeas. This noise is
inherent to the correlation process and depends
only on the signal strength, sensitivity of the an-
tennas, frequency sequence, and number of bits
recorded. One can show, assuming SNRs com-
monly used in VLBI, that the measurement noise
on different baselines is uncorrelated. The stan-
dard assumption in VLBI processing is that the
observational noise in VLBI is just the measure-
ment noise. This has the corrolary that the VLBI
observations are independent.

There are several indications that this as-
sumption is false. First, χ2 from individual ses-
sion solutions is much larger than it should be
if σmeas = σobs. Second, baseline length scat-
ter is larger than it should be based on the for-
mal errors. Third, comparison of EOP measure-
ments from simultaneous VLBI sessions are in-
consistent with the formal errors. All of these
are indicative of unmodeled error sources and/or
incorrect modeling.

There are many other error sources besides
measurement noise: 1) Phase cal errors; 2) RF
interference in the signals; 3) Other correlator
related errors; 4) Source structure; 5) Source po-
sition errors; 6) Errors in geophysical models;
7) Mismodeling clocks and/or atmospheres; 8)
Underparametrizing the time variation of clocks
and/or atmospheres; etc. All of these increase
the noise of individual observations. Many also
introduce correlation between observations.

In this note, I look at the special case of error
sources which are manifest as station dependent
changes in the measured delay. Examples are
cable calibration errors, and atmosphere calibra-
tion or modeling errors. Since, at any instant,
these errors are the same for all observations in-
volving a station, these observations are not inde-
pendent, and the observation covariance matrix
is no longer diagonal. Neglecting these correla-
tions leads to formal errors which are too small,
and incorrect estimates of parameters.

Other scientists have studied the stochastic
model used in VLBI. In a prescient paper Qian
(1985) discussed the effect of correlation between
observations, suggested a method for estimating
these correlations empirically, and demonstrated
that these correlations can significantly change
EOP estimates. Schuh and Wilkin (1989) de-
rived empirical correlation coefficients from 19
VLBI sessions, but did not take the next step
of modifying the normal equations. Schuh and
Tesmer (2000) derived empirical correlation co-
efficients, and, together with the a priori vari-
ance, σ2

meas, constructed the covariance ma-
trix. They demonstrated that this improved re-
peatability on 36 IRIS-S sessions from December
1994 through December 1998. Tesmer (2003a)
(2003b), and Tesmer and Kutterer (2004) mod-
ified the covariance matrix by inflating the diag-
onal terms with additional contributions which
were source, station and elevation dependent.



They found a reduction in the scatter of sta-
tion position of a few percent. Gipson (2006)
presented an earlier stage of this research at the
2006 IVS General Meeting.

In the next section, I present the least squares
equations for VLBI. In Section 3 I discuss how
station dependent delay modifies the covariance
matrix. In Section 4, I study the effect of in-
cluding two such error sources: “Clock-like” er-
rors are observation independent; “Atmosphere-
like” errors depend on the elevation. Using the
CONT05 data set, I demonstrate that including
these terms:

1. Decreases baseline scatter.

2. Gives more realistic formal errors.

3. Improves agreement between VLBI and
GPS EOP estimates.

2 VLBI Normal Equations

The VLBI observable τij(t) is the difference in
arrival time of a signal at two stations i, j at time
t. The delay is a function of various parameters
Aa, some of which we are interested in, such as
station position and Earth orientation, and other
“nuisance” parameters such as clock drift and
tropospheric delay.

Let Fa,ij(t) be the derivative of the delay with

respect to these parameters: Fa,ij(t) ≡ ∂τij(t)
∂Aa

.
In the linear approximation the delay is:

τij(t) − τ0,ij(t) =
∑

a

AaFa,ij(t) + εij,obs(t)

Here τ0,ij(t) is the a priori delay and εij,obs(t)
is the noise associated with the observation.
The noise term incorporates not only the cor-
relator noise, but other sources of noise due
to mis-calibration, mis-modeling, and failure of
the linear approximation. This equation can be
schematically re-written as:

τo−c = FA + ε

Let Ω be the observation covariance matrix:

Ωijt,klt′ =< εij,obs(t)εkl,obs(t
′) > (1)

Here the triples ijt and klt′ label the observa-
tions. The least squares equations are given by:

(

FT Ω−1F
)

A = FT Ω−1τo−c (2)

where

FT Ω−1F =
∑

ijt

∑

klt′

Fb,ij(t)(t
′)Ω−1

ijt,klt′Fa,kl

and the sum is over all observations. There
is a similar expression, mutatis mutandis, for
FT Ω−1τo−c. The normal equations can formally
be inverted to solve for Aa:

A =
(

FT Ω−1F
)−1

FT Ω−1τo−c

The usual assumption in VLBI data analysis is
that the observations are independent, or, stated
differently, the noise on different observations is
uncorrelated. This is equivalent to saying that
the covariance matrix is diagonal.

Ωijt,klt′ = σ2
ij(t) ×

(

δ
ij
klδ

t
t′

)

In this case the normal equations simplify sub-
stantially, and we have, e.g.,

FT Ω−1F =
∑

ijt

Fb,ij(t)Fa,ij(t)
1

σ2
ij(t)

3 Effect of Station Dependent Delay

Noise on Covariance Matrix

In this section I describe how to incorporate the
effect of a particular kind of station dependent
delay noise into the normal equations. Assume
that the delay τi at station i is given by:

τi = τi,geom + τi,mod + εi,A + εi,B ....

τi,geom is the geometric delay in a vacuum, and
τi,mod incorporates additional calibration and
modeling terms. The εi,A are station depen-
dent delay error terms. The observational noise
εij,obs(t) for baseline ij is:

εij,obs(t) = εij,meas(t) + εij,A(t) + εij,B(t) + ...

where εij,meas(t) is the measurement noise due to
the correlation process, and the remaining terms
are due to different kinds of station dependent
delay error: εij,A(t) = εi,A(t) − εj,A(t).

The following assumptions simplify the evalu-
ation of the covariance matrix:

1. The additional terms are uncorrelated with
the measurement noise: < εAεmeas >= 0

2. Different kinds of delay noise are uncorre-
lated: < εAεB >= 0 for A 6= B.
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3. Delay errors at different times are uncorre-
lated: < εij,A(t)εkl,A(t′) >= 0 for t 6= t′.

4. Delay errors at different stations are uncor-
related.

In what follows, it is crucial to distinguish be-
tween observations and scans. An observation is
the measurement of the delay on an individual

baseline. A scan is a collection of simultaneous

observations involving a commmon source.
By assumptions 1 and 2, the cross terms in

the covariance matrix vanish:

Ω = < ε2
meas > + < ε2

A > + < ε2
B > ...

= Ωmeas + ΩA + ΩB ....

The first term Ωmeas is the (diagonal) covariance
matrix associated with the measurement process.
This is the the only kind of noise included in the
standard analysis. The remaining terms are due
to the additional noise sources.

Assumption 3 implies that the covariance ma-
trix is block diagonal, with each block being the
covariance matrix for a single scan.

By assumption 4, cross-terms involving differ-
ent stations vanish. The diagonal elements for
baseline ij are:

ΩA,ij,ij = < (εi,A − εj,A)
2

>

= < ε2
i,A + ε2

j,A >

= σ2
i,A + σ2

j,A

i.e., just the sum of the noise terms for each sta-
tion. This is what you would naively expect. The
total diagonal contribution is

Ωt,ij,ij = σ2
ij,meas + σ2

i,A + σ2
j,A +

σ2
i,B + σ2

j,B + ....

This increase in the diagonal terms of the covari-
ance matrix increases the formal errors of the
estimated parameters.

The station dependent noise terms also intro-
duce off-diagonal terms in the covariance matrix
which are non-zero if, and only if the baselines
have a station in common. In this case we have:

ΩA,ij,il = −ΩA,ij,li

= < (εi,A − εj,A) (εi,A − εl,A) >

= < ε2
i,A >= σ2

i,A

These off-diagonal terms also increase the formal
erorrs of the estimates.

Note that both the diagonal and off-diagonal
terms depend only on the variance of the noise.
Hence station dependent delay noise has two ef-
fects: 1) The noise level of the observations is
increased; and 2) Observations involving a com-
mon station at a given time are correlated. Both
effects increase the formal erorrs, and both mod-
ify the VLBI estimates.

Since, by assumption 3, the covariance ma-
trix is block diagonal, building up the normal
equations given in Eq. (2) is straightforward and
done on a scan by scan basis: 1) Compute the
covariance matrix for a given scan; 2) Invert it;
3) Compute the contribution of this scan to the
normal matrix.

4 Station Dependent Clock and

Atmosphere Noise

I modified the VLBI analysis software solve to
take into account two kinds of correlated station
dependent noise. The first kind has a constant
variance independent of the observation. This
might be due, for example, to short term un-
modeled clock variation, or random errors in the
cable calibration. I call this kind of error “clock-
like”. Explicity, for station j the variance is:

σ2
j,clk = a2

j,clk

Another error source is due to mis-modeling the
atmosphere. In this case, I assume that the vari-
ance takes the form:

σ2
j,atm = a2

j,atm × [Map(elj)]
2

where Map(elj) is the mapping function. Be-
cause of the strong elevation dependence of
the mapping function, low-elevation points are
downweigted. Both kinds of noise introduce cor-
relations between observations.

In this study I make the simplifying assump-
tion that the noise terms are the same for all
stations, and do not vary with time. Realisti-
cally, of course, both noise sources may be time
and station dependent.

I looked at the effect of including these noise
sources on 15 CONT05 sessions. This is an ex-
ample of a very good large network observing
over a short period of time. Because the pe-
riod is short, un-modeled seasonal effects should
be small. Because the sessions were good, they
should be more sensitive to improvements in the
analysis.
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CONT05 Reduction in Length Scatter
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Figure 1. Difference in baseline repeatability for

CONT05 data set between the standard solution and

one incorporating 10 ps of atmosphere mapping func-

tion noise. Points above the x -axis are baselines

where the scatter is reduced for the new solution.

Figure 1 plots the difference in baseline scat-
ter between the standard solution and a so-
lution using the full covariance matrix where
aatm = 10ps. The new solution reduces the scat-
ter for the vast majority (46 out of 54) base-
lines. The average improvement is 0.92 mm, or
12.4%. Generally speaking, the longer the base-
line, the greater the improvement. On the few
baselines where the scatter is worse, it is only
slightly worse, i.e., well under a millimeter.

One possibility is that the improvement is due
entirely or predominantly to the increase in the
diagonal terms of the covariance matrix. To de-
termine if this is true, I generated a parallel series
of solutions where I included only the diagonal
terms in the covariance matrix. Figure 2 is the
baseline scatter plot for aatm = 10ps. The scat-
ter on most baselines (41/54) is improved, but
the average improvement is 0.42 mm, less than
half that obtained previously. This turns out to
be a general feature: Including only the diagonal
terms improves the solution, but not as much as
including the full covariance matrix.

Table 1 summarizes the results of a series of
solutions where I varied aatm and aclk indepen-
dently. This table lists the results for using both
the full covariance matrix and only the diagonal
terms. For each pair of solutions the table dis-
plays: 1) Average χ2; 2) RMS scatter; 3) Average
improvement in millimeters; 4) Average improve-
ment in percent; 5) Number of baselines where
the scatter is reduced.

Introducing a clock-like noise source has lit-
tle effect on the solutions. Introducing an
atmosphere-like noise source generally improves
the solutions with a broad peak starting around
aatm = 10ps. Note that in all instances, the re-
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Figure 2. Difference in baseline repeatability for

CONT05 data set between the standard solution and

one incorporating 10 ps of atmosphere mapping func-

tion noise. Only the diagonal terms in the covariance

matrix are used in the normal equations.

sults from the full covariance matrix are better
than using just the diagonal terms: Including
the correlations is beneficial. The χ2 in this ta-
ble is the average value over all baselines. Ex-
plictly, I use the formal errors for the baseline
lengths given by solve, calculate the scatter and
the χ2 for each baseline, and then take the av-
erage over all baselines. For the standard solu-
tion, χ2

avg = 2.16, which indicates that the for-

mal errors are too optimistic by
√

2.16 ' 1.47.
For the solution with aatm = 10ps χ2

avg = 1.03,
indicating that the formal errors are, on average,
correct. As the aatm is increased beyond 10 ps,
χ2

avg decreases below 1, indicating that we have
introduced too much extra noise.

Figure 3 plots the average improvement in
baseline scatters a function of aatm. It does this
for both cases: full covariance matrix, or only di-
agonal terms. The greatest reduction in baseline
scatter ocurrs around 10ps for both cases. For all
values of aatm the scatter is reduced, and for all
values the reduction is greater if the full covari-
ance matrix is used instead of the diagonal. Also
plotted in this figure is the χ2

avg. This starts at
2.16, and declines as the noise is increased. This
is what you would expect. It is interesting to
note that χ2

avg ' 1 at aatm = 10ps: At the value
where the baseline scatter has a mininum, the
formal errors are, on average, correct.

The above examples show that including sta-
tion dependent noise improves the consisteny of
VLBI sessions. I also looked at the VLBI esti-
mates of EOP, and compared them with GPS
results. For this comparison I interpolated the
GPS EOP estimates to the epoch of the VLBI
estimates using a cubic spline. After removing
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Table 1. Effect of Clock and Atmosphere Station Dependent Delay CONT05

Full Covariance Diagonal Only

aclk aatm Avg WRMS Avg. Imp. #BL Avg WRMS Avg. Imp. #BL

ps ps χ
2 mm mm % Imp. χ

2 mm mm % Imp.

0 0 2.16 7.56 - - - 2.16 7.56 - - -

5 0 1.96 7.53 0.03 0.6% 30 2.07 7.57 -0.01 0.2% 26

10 0 1.65 7.52 0.04 1.0% 30 1.87 7.59 -0.03 0.1% 22

15 0 1.40 7.55 0.01 0.6% 28 1.67 7.65 -0.09 0.2% 21

20 0 1.21 7.62 -0.06 -0.4% 24 1.50 7.72 -0.16 -0.8% 20

25 0 1.07 7.72 -0.16 -1.7% 24 1.35 7.81 -0.25 -1.6% 20

0 1 2.09 7.48 0.08 1.3% 44 2.13 7.54 0.02 0.4% 36

0 2 1.93 7.32 0.24 3.8% 48 2.05 7.48 0.08 1.4% 42

0 3 1.76 7.16 0.40 6.1% 48 1.95 7.42 0.14 2.5% 43

0 4 1.61 7.02 0.54 7.9% 47 1.84 7.35 0.21 3.6% 43

0 5 1.47 6.91 0.65 9.3% 47 1.73 7.29 0.27 4.6% 43

0 6 1.36 6.83 0.73 10.4% 48 1.63 7.24 0.32 5.4% 43

0 7 1.25 6.76 0.80 11.2% 48 1.54 7.20 0.36 6.0% 41

0 8 1.17 6.70 0.86 11.8% 48 1.45 7.17 0.39 6.5% 42

0 9 1.09 6.66 0.90 12.1% 46 1.38 7.15 0.41 7.0% 41

0 10 1.03 6.64 0.92 12.4% 46 1.31 7.13 0.43 7.3% 41

0 11 0.97 6.62 0.94 12.5% 45 1.25 7.12 0.44 7.5% 40

0 12 0.92 6.60 0.96 12.6% 45 1.19 7.11 0.45 7.7% 40

0 13 0.87 6.60 0.96 12.5% 46 1.14 7.10 0.46 7.8% 40

0 14 0.83 6.60 0.96 12.4% 47 1.09 7.10 0.46 7.9% 39

0 15 0.79 6.61 0.95 12.2% 47 1.04 7.10 0.46 7.9% 39

0 20 0.65 6.68 0.88 11.0% 46 0.87 7.13 0.43 7.5% 36

0 25 0.55 6.79 0.77 9.4% 42 0.75 7.19 0.37 6.7% 36
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Figure 3. Average percentage improvement in base-

line repeatability as a function of mapping function

noise. Diamonds indicate the full covariance is used;

triangles only the diagonal part of the covariance ma-

trix. Solid lines give the average improvement in re-

peatability; dashed lines χ
2

avg.

an offset, I calculated the WRMS scatter of the
difference for X-pole, Y-Pole, and LOD. Table 2
shows the results of this analysis. For each value
of aatm I display the WRMS scatter of the differ-
ence. For aatm > 0, I also indicate the reduction
in scatter compared to the aatm = 0 solution.
These results are presented graphically in Fig-
ure 4. As aatm increases to 10 ps, the agreement
between VLBI and GPS estimates of EOP im-

proves. Beyond about 12ps there is relatively
little change. Relatively speaking, the improve-
ment in Y-Pole and LOD is much less than for
X-Pole. The reasons for this are unclear.

Improvement Between VLBI & IGS EOP
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Figure 4. Including correlated atmosphere model-

ing error improves the agreement between VLBI and

GPS estimates for EOP. Most of the improvement

occurs in going from 0 ps to 10 ps of correlated noise.

After 10 ps the improvement is modest.
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Table 2. Comparison of VLBI & GPS EOP

X-Pole Y-Pole LOD
RMS % RMS % RMS %

aatm µas Chg µas Chg µs Chg
0 60.4 - 39.2 - 17.0 -
1 59.6 1.3 39.0 0.5 16.8 1.2
2 57.2 5.3 38.2 2.6 16.6 2.4
3 54.3 10.1 37.9 3.3 16.4 3.5
4 52.1 13.7 37.8 3.6 16.3 4.1
5 50.0 17.2 37.5 4.3 16.2 4.7
6 48.5 19.7 37.2 5.1 16.1 5.1
7 47.3 21.7 36.9 5.9 16.1 5.4
8 46.5 23.0 36.8 6.1 16.1 5.4
9 45.9 24.0 36.4 7.1 16.0 5.8

10 45.4 24.8 36.0 8.2 16.0 5.8
11 45.0 25.5 35.8 8.7 16.0 5.8
12 44.9 25.7 35.6 9.2 16.0 5.8
15 44.5 26.3 35.0 10.7 16.0 5.8
20 44.5 26.3 34.9 11.0 16.0 5.8

5 Conclusion and Future Work

Using the CONT05 data set, I demonstrated that
including station dependent delay noise reduces
baseline scatter and results in more realistic for-
mal errors. The effect of including clock-like er-
rors is relatively small. In contrast, including the
effect of atmospheric noise results in a dramatic
decrease in baseline scatter. This improvement
is not due simply to inflating the observational
errors, but depends as well on the correlations
introduced in the measurement. Including this
error makes the VLBI estimates more consistent
from day-to-day.

I also compared VLBI and GPS estimates of
polar motion and LOD. I found that introduc-
ing correlated atmosphere noise improved the re-
peatability of all three components.

I have performed a similar analysis for other
datasets including:

1. The complete set of R1s & R4s.

2. The RDV sessions.

3. High SNR experiments.

4. Sessions in which VLBI was measured by
two simultaneous VLBI networks.

Lack of space prevents me from giving a full de-
scription of my results. In all instances includ-
ing the effect of correlated noise reduces baseline
scatter, gives more realistic formal errors, and

improves the agreement between VLBI and GPS
estimates of EOP. For the last data set it also
improved the agreement between the VLBI esti-
mates of EOP.
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